Description
Table: Listens
+-------------+---------+
| Column Name | Type |
+-------------+---------+
| user_id | int |
| song_id | int |
| day | date |
+-------------+---------+
There is no primary key for this table. It may contain duplicates.
Each row of this table indicates that the user user_id listened to the song song_id on the day day.
Table: Friendship
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| user1_id | int |
| user2_id | int |
+---------------+---------+
(user1_id, user2_id) is the primary key for this table.
Each row of this table indicates that the users user1_id and user2_id are friends.
Note that user1_id < user2_id.
Write an SQL query to recommend friends to Leetcodify users. We recommend user x
to user y
if:
- Users
x
andy
are not friends, and - Users
x
andy
listened to the same three or more different songson the same day
.
Note that friend recommendations are unidirectional
, meaning if user x
and user y
should be recommended to each other, the result table should have both user x
recommended to user y
and user y
recommended to user x
. Also, note that the result table should not contain duplicates (i.e., user y
should not be recommended to user x
multiple times.).
Return the result table in any order
.
SQL Schema
Create table If Not Exists Listens (user_id int, song_id int, day date)
Create table If Not Exists Friendship (user1_id int, user2_id int)
Truncate table Listens
insert into Listens (user_id, song_id, day) values ('1', '10', '2021-03-15')
insert into Listens (user_id, song_id, day) values ('1', '11', '2021-03-15')
insert into Listens (user_id, song_id, day) values ('1', '12', '2021-03-15')
insert into Listens (user_id, song_id, day) values ('2', '10', '2021-03-15')
insert into Listens (user_id, song_id, day) values ('2', '11', '2021-03-15')
insert into Listens (user_id, song_id, day) values ('2', '12', '2021-03-15')
insert into Listens (user_id, song_id, day) values ('3', '10', '2021-03-15')
insert into Listens (user_id, song_id, day) values ('3', '11', '2021-03-15')
insert into Listens (user_id, song_id, day) values ('3', '12', '2021-03-15')
insert into Listens (user_id, song_id, day) values ('4', '10', '2021-03-15')
insert into Listens (user_id, song_id, day) values ('4', '11', '2021-03-15')
insert into Listens (user_id, song_id, day) values ('4', '13', '2021-03-15')
insert into Listens (user_id, song_id, day) values ('5', '10', '2021-03-16')
insert into Listens (user_id, song_id, day) values ('5', '11', '2021-03-16')
insert into Listens (user_id, song_id, day) values ('5', '12', '2021-03-16')
Truncate table Friendship
insert into Friendship (user1_id, user2_id) values ('1', '2')
Idea
The query result format is in the following example.
+---------+----------------+
| user_id | recommended_id |
+---------+----------------+
| 1 | 3 |
| 2 | 3 |
| 3 | 1 |
| 3 | 2 |
+---------+----------------+
Fulfill requirements :
The thinking process like as [leetcode][Database][Hard] 1892. Page Recommendations II, so the first step is listing each user and their friends cte_user_friends
.
To avoid the records that user listen the same song in a day, using the distinct
to remove duplicates records.
Finding the users listening a song in a day via self join cte_listen_distinct
, and then confirm the user friendship who in above self join set and remove them.
Finally, counting the song_id
via group by day
, user_id
, recommended_id
, and filtering the counting song_id
value large than or equals to 3
after group by
statement.
Solution
with
cte_user_friends as (
select user1_id as user_id, user2_id as friend_id from Friendship
union
select user2_id as user_id, user1_id as friend_id from Friendship
),
cte_listen_distinct as (
select distinct
user_id, song_id, day
from Listens
)
select distinct
a.user_id, b.user_id as recommended_id
from cte_listen_distinct a
left join cte_listen_distinct b on b.song_id=a.song_id and a.day=b.day
left join cte_user_friends c on c.user_id = a.user_id and c.friend_id = b.user_id
where c.user_id is null and a.user_id <> b.user_id
group by a.day, a.user_id, b.user_id
having count(a.song_id) >=3